師資
趙天壽,中國科學(xué)院院士、能源科學(xué)與工程熱物理專家。1983年畢業(yè)于天津大學(xué)熱物理工程系,1986年獲該校碩士學(xué)位,1995年獲得美國夏威夷大學(xué)博士學(xué)位。現(xiàn)任南方科技大學(xué)講席教授、美國機(jī)械工程師學(xué)會(huì)(ASME) Fellow、英國皇家化學(xué)學(xué)會(huì)(RSC) Fellow、曾獲Croucher資深研究成就獎(jiǎng)、何梁何利基金科學(xué)與技術(shù)進(jìn)步獎(jiǎng)、國家自然科學(xué)二等獎(jiǎng)、香港科大工程學(xué)杰出研究成就獎(jiǎng)。入選Clarivate/Thomson Reuters 全球高被引科學(xué)家和最有影響力科學(xué)思想名錄。任國際期刊International Journal of Heat and Mass Transfer主編與Energy & Environmental Science顧問編委。
趙院士長期致力熱質(zhì)傳遞理論和電池儲(chǔ)能技術(shù)的研究。針對國家對可再生能源利用的重大需求,圍繞燃料電池、液流電池、金屬空氣等流體電池儲(chǔ)能裝置中能量傳遞與轉(zhuǎn)換關(guān)鍵科學(xué)問題,建立了電池儲(chǔ)能系統(tǒng)中熱質(zhì)傳遞和電化學(xué)能量轉(zhuǎn)換的耦合理論,提出了熱、質(zhì)、電子及離子協(xié)同傳輸方法,突破了高功率流體電池設(shè)計(jì)的關(guān)鍵技術(shù)。提出了以可充放電的液態(tài)能量載體儲(chǔ)電的新方法,發(fā)明了充、放電裝置彼此獨(dú)立的新型儲(chǔ)能系統(tǒng),取得了系統(tǒng)效率與輸出功率的同時(shí)躍升,將在解決風(fēng)光電并網(wǎng)難題、實(shí)現(xiàn)可再生能源規(guī)模利用、解決空氣污染與氣候變化問題等方面將發(fā)揮重要作用。
研究領(lǐng)域:
◆ 能源工程:燃料電池以及先進(jìn)電池儲(chǔ)能裝置中能量傳遞與轉(zhuǎn)換
◆ 傳熱傳質(zhì):電池儲(chǔ)能系統(tǒng)中熱質(zhì)傳遞和電化學(xué)能量轉(zhuǎn)換的耦合理論
◆先進(jìn)數(shù)值模擬技術(shù):多組分/多相傳輸?shù)母褡硬柶澛椒ā⒂?jì)算流體動(dòng)力學(xué)
工作經(jīng)歷:
◆ 2021年-至今,南方科技大學(xué),機(jī)械與能源工程系,講席教授
◆ 2017年至2022,香港科技大學(xué), 工程及環(huán)境學(xué)冠名講席教授
◆ 2012年至2022,香港科技大學(xué),能源研究院,院長
◆ 2011至2022年,香港科技大學(xué),機(jī)械及航空航天工程系,講座教授
◆ 2006至2011年,香港科技大學(xué),機(jī)械工程系,教授
◆ 2001年至2006年,香港科技大學(xué),機(jī)械工程系,副教授
◆ 1995年至2001,香港科技大學(xué),機(jī)械工程系,助理教授
學(xué)習(xí)經(jīng)歷:
◆1991年11月至1995年8月,夏威夷大學(xué),機(jī)械工程系,博士
◆1983年9月至1986年7月,天津大學(xué),熱物理工程系,碩士
◆1979年9月至1983年7月,天津大學(xué),熱物理工程系,本科
所獲榮譽(yù):
◆中國科學(xué)院院士;2019年、中國科學(xué)院。
◆何梁何利基金科學(xué)與技術(shù)進(jìn)步獎(jiǎng);2018年、何梁何利基金會(huì)。
◆國家自然科學(xué)獎(jiǎng)二等獎(jiǎng)(第一完成人);2013年、中華人民共和國國務(wù)院。
◆國家自然科學(xué)獎(jiǎng)二等獎(jiǎng)(主要完成人);2012年、中華人民共和國國務(wù)院。
◆Croucher Senior Fellowship award;2008年、香港裘槎基金會(huì)。
代表文章(部分):
1.Y.K. Lin, M.C. Wu, J. Sun, L.C. Zhang, Q.P. Jian, T.S. Zhao, 2021, “A High-Capacity, Long-Cycling All-Solid-State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte”, Advanced Energy Materials, 11(35), 2101612
2.S.B. Wan, X.W. Liang, H.R. Jiang, J. Sun, N. Djilali, T.S. Zhao, 2021, “A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries”, Applied Energy, 298(), 117177
3.B. Liu, C.W. Tang, C. Zhang, G.C. Jia, T.S. Zhao, 2021, “Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery”, Chemistry of Materials, 33 (3), 978–986
4.C. Zhao, G.L. Xu, Z. Yu, L.C. Zhang, I.H. Hwang, Y.X. Mo, Y.X. Ren, L. Cheng, C-J. Sun, Y. Ren, X. B. Zuo, J-T. Li, S.G. Sun, K. Amine, T.S. Zhao, 2021, "A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites", Nature Nanotechnology, 16(2021), 166-173
5.L.C. Zhang, C. Zhao, M.C. Wu, T.S. Zhao, 2020, "An energy-dense, flowable suspension of hollow carbon nanoshell-hosted sulfur as an electroactive material for flow batteries", Journal of Power Sources, 478(2020), 228750
6.Q.P. Jian, Y.H. Wan, J. Sun, M.C. Wu, T.S. Zhao, 2020, "A dendrite-free zinc anode for rechargeable aqueous batteries", Journal of Materials Chemistry A, 8(2020), 20175-20184
7.K. Liu, M.C. Wu, H.R. Jiang, Y.K. Lin, T.S. Zhao, 2020, "An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries", Journal of Materials Chemistry, 8(2020), 18802-18809
8.L. Zeng, Y.X. Ren, L. Wei, X.Z. Fan, T.S. Zhao, 2020, "Asymmetric porous polybenzimidazole membranes with high conductivity and selectivity for vanadium redox flow batteries", Energy Technology, 8(10), 2000592.
9.C. Xiong, G.Y. Zhu, H.R. Jiang, Q. Chen, T.S. Zhao, 2020, "Achieving Multiplexed Functionality in a Hierarchical MXene-based Sulfur Host for High-rate, High-loading Lithium-Sulfur Batteries", Energy Storage Materials, 33(2020), 147-157.
10.Y.X. Ren, L. Zeng, H.R. Jiang, W.Q. Ruan, Q. Chen, T.S. Zhao, 2019, “Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries”, Nature Communications, 10 (2019) 3249
11.L. Shi, A. Xu, D. Pan, T.S. Zhao, 2019, "Aqueous proton-selective conduction across two-dimensional graphyne," Nature Communications 10 (2019) 1165.
12.H.R. Jiang, L. Wei, X.Z. Fan, W. Shyy, T.S. Zhao, 2019, "A novel energy storage system incorporating electrically rechargeable liquid fuels as the storage medium," Science Bulletin 64 (2019) 270-280.
13.B.W. Zhang, Y. Lei, B.F. Bai, A. Xu, T.S. Zhao, 2019, "A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame," Applied Thermal Engineering 151 (2019) 495-505.
14.L. Wei, M.C. Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren, 2018, "An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage," Applied Energy 215 (2018) 98-105.
15.M. Liu, D. Zhou, H.R. Jiang, Y.X. Ren, F.Y. Kang, T.S. Zhao, 2016, "A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte," Nano Energy 28 (2016) 97-105.
16.X.B. Zhu, T.S. Zhao, P. Tan, Z.H. Wei, M.C. Wu, 2016, "A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode," Nano Energy 26 (2016) 565-576.
17.X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, 2016, "A high-performance dual-scale porous electrode for vanadium redox flow batteries," Journal of Power Sources 325 (2016) 329-336.
18.H.R. Jiang, Z.H. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, 2016, "Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries," Nano Energy 23 (2016) 97-104.
19.P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, 2016, "A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air," Energy & Environmental Science, 2016, 9, 1783-1793.
20.X.B. Zhu, T. S. Zhao, Z. H. Wei, P. Tan, L. An, 2015, "A high-rate and long cycle life solid-state lithium-air battery," Energy & Environmental Science, 2015, 8, 3745 - 3754.
21.Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, 2015, "A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage," Journal of Power Sources 300 (2015) 438-443.
22.X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, G. Zhao, 2015, "A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure," Energy & Environmental Science, 2015, 8, 2782-2790.
23.L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, 2015, "A high-performance sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention for anion exchange membrane fuel cells," Energy & Environmental Science, 2015, 8, 2768-2774.
24.Q. Xu, T.S. Zhao, 2015, "Fundamental models for flow batteries," Progress in Energy and Combustion Science 49 (2015) 40–58.
25.X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, 2015, "The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance," Electrochimica Acta 153 (2015) 492–498.
26.L. Zeng, T.S. Zhao, 2015, "Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis," Nano Energy 11 (2015)110–118.
27.Q. Xu, T.S. Zhao, C. Zhang, 2014, “Performance of a vanadium redox flow battery with and without flow fields,” Electrochimica Acta142 (2014) 61–67.
28.P. Tan, W. Shyy, L. An, Z.H. Wei, and T.S. Zhao, 2014 “A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity,” Electrochemistry Communications 46 (2014) 111–114.
29.Z.H. Chai, T.S. Zhao, 2013, “Lattice Boltzmann model for the convection-diffusion equation,” Physical Review E 87, 063309 (2013).
30.L. An, T.S. Zhao, Y.S. Li, Q.X. Wu, 2012, “Charge carriers in alkaline direct oxidation fuel cells,” Energy & Environmental Science 2012, 5, 7536-7538.
31.J.B. Xu, P. Gao, T.S. Zhao, 2012, “Non-precious CO3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells,” Energy & Environmental Science 2012,5,5333-5339.
32.S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, 2010, “Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells," Journal of Power Sources 195 (2010) 1001-1006.
33.T.S. Zhao, C. Xu, R. Chen, W.W. Yang, 2009, “Mass transport phenomena in direct methanol fuel cells,” Progress in Energy and Combustion Science 35 (2009) 275–292.
34.Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, 2009, “Mechanism study of the ethanol oxidation reaction on palladium in alkaline media,” Electrochimica Acta 54 (2009) 2203-2208.
35.C. Xu, T.S. Zhao, 2007, “A new flow field design for polymer electrolyte-based fuel cells,” Electrochemistry Communications 9 (2007) 497-503.
36.J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, 2005, “Effect of methanol concentration on passive DMFC performance,” Featured article in Fuel Cell Bulletin, ISSN 1464-2859 February 2005.
37.H. Yang, T.S. Zhao, Q. Ye, 2005, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields,” Journal of Power Sources, 139(1-2) pp. 79-90.
38.Q. Ye, T.S. Zhao, H. Yang, J. Prabhuram, 2005, "Electrochemical reactions in a DMFC under open circuit conditions," Electrochemical and Solid-State Letters, 8 (1) A52-A54 (2005).
39.Z.L. Guo, T.S. Zhao, 2002, “Lattice Boltzmann model for incompressible flows through porous media,” Physical Review E, 66, 036304 (2002).
40.S.M. Liao, T.S. Zhao, 2002, “Measurements of Heat Transfer Coefficients from Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels,” J. Heat Transf.-Trans. ASME 2002, 124 (3), 413-420.